\qquad
\qquad
\qquad

Fina exam revie sem 1

Multiple Choice

Identify the letter of the choice that best completes the statement or answers the question.
\qquad 1. In the steps of the scientific method, what is the next step after formulating and objectively testing hypotheses?
a. interpreting results
c. conducting experiments
b. stating conclusions
d. making observations and collecting data
2. The symbol mm represents a
a. micrometer.
c. megameter.
b. millimeter.
d. manometer.
\qquad 3. The SI base unit for time is
a. 1 day.
b. 1 hour.
c. 1 minute.
d. 1 second.
4. If some measurements agree closely with each other but differ widely from the actual value, these measurements are
a. neither precise nor accurate.
b. accurate but not precise.
c. acceptable as a new standard of accuracy.
d. precise but not accurate.
5. Five darts strike near the center of a target. The dart thrower is
a. accurate.
c. both accurate and precise.
b. precise.
d. neither accurate nor precise.
\qquad 6. Calculate the following, and express the answer in scientific notation with the correct number of significant figures: $(0.82+0.042) \times\left(4.4 \times 10^{3}\right)$
a. $\quad 3.8 \times 10^{3}$
b. $\quad 3.78 \times 10^{3}$
c. $\quad 3.784 \times 10^{3}$
d. 3784
\qquad 7. The Greek letter sigma, Σ, indicates a(n)
a. difference or change.
c. direct proportion.
b. sum or total.
d. inverse proportion
\qquad 8. A dolphin swims $1.85 \mathrm{~km} / \mathrm{h}$. How far has the dolphin traveled after 0.60 h ?
a. $\quad 1.1 \mathrm{~km}$
b. 2.5 km
c. $\quad 0.63 \mathrm{~km}$
d. 3.7 km
9. Which of the following is the expression for acceleration?
a. $\quad a=\frac{\Delta t}{\Delta v}$
b. $\quad a=\frac{\Delta v}{\Delta t}$
c. $\quad a=\Delta t \bullet \Delta v$
d. $\quad a=\frac{v_{i}-v_{f}}{t_{i}-t_{f}}$

10. What does the graph above illustrate about acceleration?
a. The acceleration is constant.
b. The acceleration is zero.
c. The acceleration decreases.
d. There is not enough information to answer.
11. A shopping cart given an initial velocity of $2.0 \mathrm{~m} / \mathrm{s}$ undergoes a constant acceleration of $3.0 \mathrm{~m} / \mathrm{s}^{2}$. What is the magnitude of the cart's displacement after the first 4.0 s of its motion?
a. $\quad 10.0 \mathrm{~m}$
b. $\quad 55 \mathrm{~m}$
c. $\quad 32 \mathrm{~m}$
d. $\quad 80.0 \mathrm{~m}$
12. Acceleration due to gravity is also called
a. negative velocity.
c. free-fall acceleration.
b. displacement.
d. instantaneous velocity.
13. A rock is thrown straight upward with an initial velocity of $24.5 \mathrm{~m} / \mathrm{s}$ where the downward acceleration due to gravity is $9.81 \mathrm{~m} / \mathrm{s}^{2}$. What is the rock's displacement after 1.00 s ?
a. $\quad 9.81 \mathrm{~m}$
b. $\quad 19.6 \mathrm{~m}$
c. 24.5 m
d. 29.4 m
14. Which would fall with greater acceleration in a vacuum, a leaf or a stone?
a. the leaf
b. the stone
c. They would accelerate at the same rate.
d. It is difficult to determine without more information.
15. Identify the following quantities as scalar or vector: the mass of an object, the number of leaves on a tree, wind velocity.
a. vector, scalar, scalar
c. scalar, vector, scalar
b. scalar, scalar, vector
d. vector, scalar, vector
16. A lightning bug flies at a velocity of $0.25 \mathrm{~m} / \mathrm{s}$ due east toward another lightning bug seen off in the distance. A light easterly breeze blows on the bug at a velocity of $0.25 \mathrm{~m} / \mathrm{s}$. What is the resultant velocity of the lightning bug?
a. $\quad 0.50 \mathrm{~m} / \mathrm{s}$
b. $0.00 \mathrm{~m} / \mathrm{s}$
c. $\quad 0.75 \mathrm{~m} / \mathrm{s}$
d. $0.25 \mathrm{~m} / \mathrm{s}$
17. An airplane flying at $120 \mathrm{~km} / \mathrm{h}$ due west moves into a region where the wind is blowing at $40 \mathrm{~km} / \mathrm{h}$ due east. If the plane's original vector velocity is $\mathbf{v}_{\text {plane }}$, which of the following is the correct expression for the plane's resulting velocity?
a. $\frac{2}{3} \mathbf{v}_{\text {plane }}$
b. $-\frac{1}{3} \mathbf{v}_{\text {plane }}$
c. $\quad \frac{3}{4} \mathbf{v}_{\text {plane }}$
d. $-\frac{2}{3} \mathbf{v}_{\text {plane }}$
18. Which of the following is the best coordinate system to analyze a car traveling northeast from one city to another?
a. positive x-axis pointing east; positive y-axis pointing south
b. positive x-axis pointing west; positive y-axis pointing east
c. positive x-axis pointing north; positive y-axis pointing south
d. positive x-axis pointing east; positive y-axis pointing north
19. A duck waddles 2.5 m east and 6.0 m north. What are the magnitude and direction of the duck's displacement with respect to its original position?
a. $\quad 3.5 \mathrm{~m}$ at 19° north of east
b. $\quad 6.3 \mathrm{~m}$ at 67° north of east
c. $\quad 6.5 \mathrm{~m}$ at 67° north of east
d. 6.5 m at 72° north of east
20. Which of the following is an example of projectile motion?
a. a jet lifting off a runway
b. a bullet being fired from a gun
c. dropping an aluminum can into the recycling bin
d. a space shuttle orbiting Earth
21. Which of the following exhibits parabolic motion?
a. a person diving into a pool from a diving board
b. a space shuttle orbiting Earth
c. a leaf falling from a tree
d. a train moving along a flat track
22. A superhero flying at treetop level sees the Eiffel Tower elevator begin to free fall. If the superhero is 1.00 km away from the tower and the elevator falls from a height of 240.0 m , how long does the superhero have to save the people in the elevator? What should the superhero's average velocity be?
a. $7 \mathrm{~s} ; 333 \mathrm{~m} / \mathrm{s}$
b. $5 \mathrm{~s} ; 200 \mathrm{~m} / \mathrm{s}$
c. $7 \mathrm{~s} ; 143 \mathrm{~m} / \mathrm{s}$
d. $9 \mathrm{~s} ; 111 \mathrm{~m} / \mathrm{s}$
23. Which of the following statements does NOT describe force?
a. Force causes objects at rest to remain stationary.
b. Force causes objects to start moving.
c. Force causes objects to stop moving.
d. Force causes objects to change direction.
24. Which of the following forces exists between objects even in the absence of direct physical contact?
a. frictional force
c. contact force
b. fundamental force
d. field force

25. In the free-body diagram shown above, which of the following is the gravitational force acting on the car?
a. $\quad 5800 \mathrm{~N}$
b. $\quad 775 \mathrm{~N}$
c. $\quad 14700 \mathrm{~N}$
d. $\quad 13690 \mathrm{~N}$
26. A car goes forward along a level road at constant velocity. The additional force needed to bring the car into equilibrium is
a. greater than the normal force times the coefficient of static friction.
b. equal to the normal force times the coefficient of static friction.
c. the normal force times the coefficient of kinetic friction.
d. zero.
27. A trapeze artist weighs $8.00 \times 10^{2} \mathrm{~N}$. The artist is momentarily held to one side of a swing by a partner so that both of the swing ropes are at an angle of 30.0° with the vertical. In such a condition of static equilibrium, what is the horizontal force being applied by the partner?
a. $\quad 924 \mathrm{~N}$
b. $\quad 433 \mathrm{~N}$
c. $\quad 196 \mathrm{~N}$
d. $\quad 462 \mathrm{~N}$
28. An airplane with a mass of $1.2 \times 10^{4} \mathrm{~kg}$ tows a glider with a mass of $0.60 \times 10^{4} \mathrm{~kg}$. If the airplane propellers provide a net forward thrust of $3.6 \times 10^{4} \mathrm{~N}$, what is the acceleration of the glider?
a. $\quad 2.0 \mathrm{~m} / \mathrm{s}^{2}$
b. $\quad 3.0 \mathrm{~m} / \mathrm{s}^{2}$
c. $\quad 6.0 \mathrm{~m} / \mathrm{s}^{2}$
d. $\quad 9.8 \mathrm{~m} / \mathrm{s}^{2}$
29. The statement by Newton that for every action there is an equal but opposite reaction is which of his laws of motion?
a. first
c. third
b. second
d. fourth
30. A measure of the quantity of matter is
a. density.
c. force.
b. weight.
d. mass.
31. An Olympic skier moving at $20.0 \mathrm{~m} / \mathrm{s}$ down a 30.0° slope encounters a region of wet snow and slides 145 m before coming to a halt. What is the coefficient of friction between the skis and the snow?
a. $\quad 0.540$
b. 0.740
c. 0.116
d. 0.470
32. Work is done when
a. the displacement is not zero.
b. the displacement is zero.
c. the force is zero.
d. the force and displacement are perpendicular.
33. A worker pushes a wheelbarrow with a horizontal force of 50.0 N over a level distance of 5.0 m . If a frictional force of 43 N acts on the wheelbarrow in a direction opposite to that of the worker, what net work is done on the wheelbarrow?
a. 250 J
b. $\quad 0.0 \mathrm{~J}$
c. 35 J
d. $\quad 10.0 \mathrm{~J}$
34. Which of the following energy forms is involved in a pencil falling from a desk?
a. kinetic energy
b. nonmechanical energy
c. gravitational potential energy
d. elastic potential energy and kinetic energy
35. What is the kinetic energy of a 0.135 kg baseball thrown at $40.0 \mathrm{~m} / \mathrm{s}$?
a. $\quad 54.0 \mathrm{~J}$
b. $\quad 87.0 \mathrm{~J}$
c. $\quad 108 \mathrm{~J}$
d. 216 J
36. Which of the following energy forms is associated with an object due to its position relative to Earth?
a. potential energy
c. gravitational potential energy
b. elastic potential energy
d. kinetic energy
37. Which form of energy is involved in weighing fruit on a spring scale?
a. kinetic energy
c. gravitational potential energy
b. nonmechanical energy
d. elastic potential energy
38. A 0.002 kg coin, which has zero potential energy at rest, is dropped into a 10.0 m well. After the coin comes to a stop in the mud, what is its potential energy?
a. $\quad 0.000 \mathrm{~J}$
b. 0.196 J
c. -0.196 J
d. 0.020 J
39. A 16.0 kg child on roller skates, initially at rest, rolls 2.0 m down an incline at an angle of 20.0° with the horizontal. If there is no friction between incline and skates, what is the kinetic energy of the child at the bottom of the incline? $\left(g=9.81 \mathrm{~m} / \mathrm{s}^{2}.\right)$
a. 210 J
b. 610 J
c. 11 J
d. 110 J
40. What is the average power supplied by a 60.0 kg secretary running up a flight of stairs rising vertically 4.0 m in 4.2 s ?
a. 380 W
b. $\quad 560 \mathrm{~W}$
c. $\quad 610 \mathrm{~W}$
d. 670 W
41. Which of the following has the greatest momentum?
a. truck with a mass of 2250 kg moving at a velocity of $25 \mathrm{~m} / \mathrm{s}$
b. car with a mass of 1210 kg moving at a velocity of $51 \mathrm{~m} / \mathrm{s}$
c. truck with a mass of 6120 kg moving at a velocity of $10 \mathrm{~m} / \mathrm{s}$
d. car with a mass of 1540 kg moving at a velocity of $38 \mathrm{~m} / \mathrm{s}$
42. When comparing the momentum of two moving objects, which of the following is correct?
a. The object with the higher velocity will have less momentum if the masses are equal.
b. The more massive object will have less momentum if its velocity is greater.
c. The less massive object will have less momentum if the velocities are the same.
d. The more massive object will have less momentum if the velocities are the same.
43. The change in an object's momentum is equal to
a. the product of the mass of the object and the time interval.
b. the product of the force applied to the object and the time interval.
c. the time interval divided by the net external force.
d. the net external force divided by the time interval.
44. A 0.2 baseball if pitched with a velocity of $40 \mathrm{~m} / \mathrm{s}$ and is then batted to the pitcher with a velocity of $60 \mathrm{~m} / \mathrm{s}$. What is the magnitude of change in the ball's momentum?
a. $4 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$
b. $8 \mathrm{~kg} \bullet \mathrm{~m} / \mathrm{s}$
c. $2 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$
d. $20 \mathrm{~kg} \bullet \mathrm{~m} / \mathrm{s}$
45. Which of the following statements properly relates the variables in the equation $\mathbf{F} \Delta t=\Delta \mathbf{p}$?
a. A large constant force changes an object's momentum over a long time interval.
b. A large constant force acting over a long time interval causes a large change in momentum.
c. A large constant force changes an object's momentum at various time intervals.
d. A large constant force does not necessarily cause a change in an object's momentum.
46. A large moving ball collides with a small stationary ball. The momentum
a. of the large ball decreases, and the momentum of the small ball increases.
b. of the small ball decreases, and the momentum of the large ball increases.
c. of the large ball increases, and the momentum of the small ball decreases.
d. does not change for either ball.
47. Two skaters stand facing each other. One skater's mass is 60 kg , and the other's mass is 72 kg . If the skaters push away from each other without spinning,
a. the 60 kg skater travels at a lower momentum.
b. their momenta are equal but opposite.
c. their total momentum doubles.
d. their total momentum decreases.
48. The law of conservation of momentum states that
a. the total initial momentum of all objects interacting with one another usually equals the total final momentum.
b. the total initial momentum of all objects interacting with one another does not equal the total final momentum.
c. the total momentum of all objects interacting with one another is zero.
d. the total momentum of all objects interacting with one another remains constant regardless of the nature of the forces between the objects.
49. Which of the following angles equals $2 \pi \mathrm{rad}$?
a. 360°
b. 180°
c. 0°
d. 3.14°
50. Earth has an equatorial radius of approximately 6380 km , and it rotates 360° every 24 h . What is the angular displacement of a person standing at the equator for 3.0 h ?
a. $\quad 0.26 \mathrm{rad}$
b. $\quad 0.52 \mathrm{rad}$
c. $\quad 0.78 \mathrm{rad}$
d. $\quad 0.39 \mathrm{rad}$
51. If the distance from the center of a merry-go-round to the edge is 1.2 m , what centripetal acceleration does a passenger experience when the merry-go-round rotates at an angular speed of $0.5 \mathrm{rad} / \mathrm{s}$?
a. $\quad 1.7 \mathrm{~m} / \mathrm{s}^{2}$
b. $\quad 0.9 \mathrm{~m} / \mathrm{s}^{2}$
c. $\quad 0.3 \mathrm{~m} / \mathrm{s}^{2}$
d. $0.6 \mathrm{~m} / \mathrm{s}^{2}$
52. The gravitational force between two masses is 36 N . What is the gravitational force if the distance between them is tripled? $\left(G=6.673 \times 10^{-11} \mathrm{~N} \bullet \mathrm{~m}^{2} / \mathrm{kg}^{2}\right)$
a. $\quad 4.0 \mathrm{~N}$
b. $\quad 9.0 \mathrm{~N}$
c. $\quad 18 \mathrm{~N}$
d. 27 N

Fina exam revie sem 1

Answer Section

MULTIPLE CHOICE

1. ANS: A
2. ANS: B
3. ANS: D
4. ANS: D

DIF: I
OBJ: 1-1.2
5. ANS: C
6. ANS: A
7. ANS: B
8. ANS: A
9. ANS: B
10. ANS: A
11. ANS: C
12. ANS: C
13. ANS: B
14. ANS: C
15. ANS: B
16. ANS: B
17. ANS: A
18. ANS: D
19. ANS: C
20. ANS: B
21. ANS: A
22. ANS: C
23. ANS: A
24. ANS: D
25. ANS: C
26. ANS: D
27. ANS: D
28. ANS: A
29. ANS: C
30. ANS: D
31. ANS: B
32. ANS: A
33. ANS: C
34. ANS: C
35. ANS: C
36. ANS: C
37. ANS: D
38. ANS: C
39. ANS: D
40. ANS: B

DIF: I
DIF: I
DIF: I
DIF: II
DIF: IIIA
DIF: I
DIF: IIIA
DIF: I
DIF: II
DIF: IIIA
DIF: I
DIF: IIIB
DIF: I
DIF: II
DIF: II
DIF: IIIA
DIF: I
DIF: IIIB
DIF: I
DIF: I
DIF: IIIB
DIF: I
DIF: I
DIF: I
DIF: I
DIF: IIIB
DIF: IIIB
DIF: I
DIF: I
DIF: IIIC
DIF: I
DIF: IIIA
DIF: I
DIF: IIIA
DIF: I
DIF: I
DIF: IIIB
DIF: IIIA
DIF: IIIB

OBJ: 1-2.1
OBJ: 1-2.1
OBJ: 1-2.3
OBJ: 1-2.3
OBJ: 1-2.4
OBJ: 1-3.2
OBJ: 2-1.2
OBJ: 2-2.1
OBJ: 2-2.2
OBJ: 2-2.3
OBJ: 2-3.1
OBJ: 2-3.2
OBJ: 2-3.3
OBJ: 3-1.1
OBJ: 3-1.2
OBJ: 3-1.3
OBJ: 3-2.1
OBJ: 3-2.2
OBJ: 3-3.1
OBJ: 3-3.2
OBJ: 3-4.2
OBJ: 4-1.1
OBJ: 4-1.2
OBJ: 4-1.3
OBJ: 4-2.3
OBJ: 4-2.3
OBJ: 4-3.2
OBJ: 4-3.3
OBJ: 4-4.1
OBJ: 4-4.4
OBJ: 5-1.2
OBJ: 5-1.4
OBJ: 5-2.1
OBJ: 5-2.2
OBJ: 5-2.4
OBJ: 5-2.4
OBJ: 5-2.5
OBJ: 5-3.3
OBJ: 5-4.3
41. ANS: B DIF: IIIB OBJ: 6-1.1
42. ANS: C
43. ANS: B

DIF: II
DIF: I
OBJ: 6-1.1
44. ANS: D
45. ANS: B
46. ANS: A
47. ANS: B
48. ANS: D
49. ANS: A
50. ANS: C
51. ANS: C
52. ANS: A

DIF: IIIB
DIF: I
DIF: II
DIF: II
DIF: I
DIF: I
DIF: IIIA
DIF: IIIB
DIF: IIIA

OBJ: 6-1.3
OBJ: 6-1.3
OBJ: 6-1.4
OBJ: 6-2.1
OBJ: 6-2.2
OBJ: 6-2.3
OBJ: 7-1.1
OBJ: 7-1.2
OBJ: 7-2.3
OBJ: 7-3.3

