Name:	Class:	Date:	ID: A

Fina exam revie sem 1

Multiple Choice

Identify the letter of the choice that best completes the statement or answers the question.

- 1. In the steps of the scientific method, what is the next step after formulating and objectively testing hypotheses?
 - a. interpreting results
 - stating conclusions
 - 2. The symbol mm represents a

 - a. micrometer.
 - **b.** millimeter
 - 3. The SI base unit for time is
 - - **a.** 1 day.
 - **b.** 1 hour.

- conducting experiments
- making observations and collecting data
- c. megameter.
- manometer.
- c. 1 minute
- d. 1 second.
- 4. If some measurements agree closely with each other but differ widely from the actual value, these measurements are
 - neither precise nor accurate.
 - accurate but not precise.
 - acceptable as a new standard of accuracy. c.
 - **d.** precise but not accurate.
- 5. Five darts strike near the center of a target. The dart thrower is
 - accurate. a.

both accurate and precise. c.

b. precise.

- **d.** neither accurate nor precise.
- 6. Calculate the following, and express the answer in scientific notation with the correct number of significant figures: $(0.82 + 0.042) \times (4.4 \times 10^3)$
 - **a.** 3.8×10^3

c. 3.784×10^3

b. 3.78×10^3

- **d.** 3784
- 7. The Greek letter sigma, Σ , indicates a(n)
 - **a.** difference or change.
 - **b.** sum or total.

- direct proportion.
- inverse proportion
- **8.** A dolphin swims 1.85 km/h. How far has the dolphin traveled after 0.60 h?
 - **a.** 1.1 km
 - **b.** 2.5 km

- \mathbf{c} . 0.63 km
- **d.** 3.7 km
- **9.** Which of the following is the expression for acceleration?
 - $a = \frac{\Delta t}{\Delta v}$

c. $a = \Delta t \bullet \Delta v$

b. $a = \frac{\Delta v}{\Delta t}$

 $\mathbf{d.} \quad a = \frac{v_i - v_f}{t_i - t_f}$

- **10.** What does the graph above illustrate about acceleration?
 - **a.** The acceleration is constant.
 - **b.** The acceleration is zero.
 - **c.** The acceleration decreases.
 - **d.** There is not enough information to answer.
- 11. A shopping cart given an initial velocity of 2.0 m/s undergoes a constant acceleration of 3.0 m/s². What is the magnitude of the cart's displacement after the first 4.0 s of its motion?
 - **a.** 10.0 m

c. 32 m

b. 55 m

- **d.** 80.0 m
- 12. Acceleration due to gravity is also called
 - a. negative velocity.

c. free-fall acceleration.

b. displacement.

- **d.** instantaneous velocity.
- 13. A rock is thrown straight upward with an initial velocity of 24.5 m/s where the downward acceleration due to gravity is 9.81 m/s². What is the rock's displacement after 1.00 s?
 - **a.** 9.81 m

c. 24.5 m

b. 19.6 m

- **d.** 29.4 m
- **14.** Which would fall with greater acceleration in a vacuum, a leaf or a stone?
 - a. the leaf
 - **b.** the stone
 - **c.** They would accelerate at the same rate.
 - **d.** It is difficult to determine without more information.
 - **15.** Identify the following quantities as scalar or vector: the mass of an object, the number of leaves on a tree, wind velocity.
 - a. vector, scalar, scalar

c. scalar, vector, scalar

b. scalar, scalar, vector

- **d.** vector, scalar, vector
- **16.** A lightning bug flies at a velocity of 0.25 m/s due east toward another lightning bug seen off in the distance. A light easterly breeze blows on the bug at a velocity of 0.25 m/s. What is the resultant velocity of the lightning bug?
 - **a.** 0.50 m/s

c. 0.75 m/s

b. 0.00 m/s

d. 0.25 m/s

17.	An airplane flying at 120 km/h due west moves into a region where the wind is blowing at 40 km/h due east.
	If the plane's original vector velocity is \mathbf{v}_{plane} , which of the following is the correct expression for the plane's
	resulting velocity?

	2
a.	$\frac{1}{3}$ V _{plane}

$$\mathbf{c.} \quad \frac{3}{4}\mathbf{v_{plane}}$$

b.
$$-\frac{1}{3}\mathbf{v}_{\mathbf{plane}}$$

d.
$$-\frac{2}{3}$$
v_{plane}

18. Which of the following is the best coordinate system to analyze a car traveling northeast from one city to another?

- **a.** positive x-axis pointing east; positive y-axis pointing south
- **b.** positive *x*-axis pointing west; positive *y*-axis pointing east
- **c.** positive *x*-axis pointing north; positive *y*-axis pointing south
- **d.** positive x-axis pointing east; positive y-axis pointing north

19. A duck waddles 2.5 m east and 6.0 m north. What are the magnitude and direction of the duck's displacement with respect to its original position?

- a. 3.5 m at 19° north of east
- c. 6.5 m at 67° north of east
- **b.** 6.3 m at 67° north of east
- **d.** 6.5 m at 72° north of east

20. Which of the following is an example of projectile motion?

- **a.** a jet lifting off a runway
- **b.** a bullet being fired from a gun
- c. dropping an aluminum can into the recycling bin
- **d.** a space shuttle orbiting Earth

21. Which of the following exhibits parabolic motion?

- a. a person diving into a pool from a diving board
- **b.** a space shuttle orbiting Earth
- c. a leaf falling from a tree
- **d.** a train moving along a flat track

22. A superhero flying at treetop level sees the Eiffel Tower elevator begin to free fall. If the superhero is 1.00 km away from the tower and the elevator falls from a height of 240.0 m, how long does the superhero have to save the people in the elevator? What should the superhero's average velocity be?

a. 7 s; 333 m/s

c. 7 s; 143 m/s

b. 5 s; 200 m/s

d. 9 s; 111 m/s

23. Which of the following statements does NOT describe force?

- **a.** Force causes objects at rest to remain stationary.
- **b.** Force causes objects to start moving.
- **c.** Force causes objects to stop moving.
- **d.** Force causes objects to change direction.

24. Which of the following forces exists between objects even in the absence of direct physical contact?

a. frictional force

c. contact force

b. fundamental force

d. field force

25. In the free-body diagram shown above, which of the following is the gravitational force acting on

a. 5800 N

c. 14 700 N

b. 775 N

d. 13 690 N

26. A car goes forward along a level road at constant velocity. The additional force needed to bring the car into equilibrium is

a. greater than the normal force times the coefficient of static friction.

b. equal to the normal force times the coefficient of static friction.

c. the normal force times the coefficient of kinetic friction.

d. zero.

27. A trapeze artist weighs 8.00×10^2 N. The artist is momentarily held to one side of a swing by a partner so that both of the swing ropes are at an angle of 30.0° with the vertical. In such a condition of static equilibrium, what is the horizontal force being applied by the partner?

a. 924 N

c. 196 N

b. 433 N

d. 462 N

28. An airplane with a mass of 1.2×10^4 kg tows a glider with a mass of 0.60×10^4 kg. If the airplane propellers provide a net forward thrust of 3.6×10^4 N, what is the acceleration of the glider?

a. 2.0 m/s^2

c. 6.0 m/s^2

b. 3.0 m/s^2

d. 9.8 m/s^2

29. The statement by Newton that for every action there is an equal but opposite reaction is which of his laws of motion?

a. first

c. third

b. second

d. fourth

30. A measure of the quantity of matter is

a. density.

c. force.

b. weight.

d. mass.

31. An Olympic skier moving at 20.0 m/s down a 30.0° slope encounters a region of wet snow and slides 145 m before coming to a halt. What is the coefficient of friction between the skis and the snow?

a. 0.540

c. 0.116

b. 0.740

d. 0.470

32. Work is done when

a. the displacement is not zero.

b. the displacement is zero.

c. the force is zero.

d. the force and displacement are perpendicular.

Name	::			ID: A				
	33.	force of 43 N acts on the wheelbarrow? a. 250 J	elbarrow in a direction c.	Force of 50.0 N over a level distance of 5.0 m. If a frictional in opposite to that of the worker, what net work is done on 35 J				
		b. 0.0 J	d.	10.0 J				
	34.	 Which of the following energy a. kinetic energy b. nonmechanical energy c. gravitational potential energy d. elastic potential energy 	ergy	a pencil falling from a desk?				
	35.	What is the kinetic energy of	a 0.135 kg baseball th					
		a. 54.0 J	c.	108 J				
		b. 87.0 J	d.	216 J				
	36.	Which of the following energa. potential energyb. elastic potential energy	c.	with an object due to its position relative to Earth? gravitational potential energy kinetic energy				
	37.	Which form of energy is invo	olved in weighing fruit	on a spring scale?				
		a. kinetic energy	c.	gravitational potential energy				
		b. nonmechanical energy	d.	elastic potential energy				
	38.			rest, is dropped into a 10.0 m well. After the coin comes				
		to a stop in the mud, what is	ts potential energy?					
		a. 0.000 J	c.	-0.196 J				
	•	b. 0.196 J	d.	0.020 J				
	39.	A 16.0 kg child on roller skates, initially at rest, rolls 2.0 m down an incline at an angle of 20.0° with the horizontal. If there is no friction between incline and skates, what is the kinetic energy of the child at the bottom of the incline? ($g = 9.81 \text{ m/s}^2$.)						
		a. 210 J	c.	11 J				
		b. 610 J	d.	110 J				
	40.	in 4.2 s?		cretary running up a flight of stairs rising vertically 4.0 m				
		a. 380 W b. 560 W	c. d.	610 W 670 W				
	41							
	41.	Which of the following has the greatest momentum? a. truck with a mass of 2250 kg moving at a velocity of 25 m/s						
		b. car with a mass of 1210		•				
		c. truck with a mass of 612		•				
		d. car with a mass of 1540						
	42.	When comparing the momen	tum of two moving ob	jects, which of the following is correct?				
			-	ess momentum if the masses are equal.				
		5		ntum if its velocity is greater.				
		-		um if the velocities are the same.				
	4.0	•		ntum if the velocities are the same.				
	43.	The change in an object's mo		ma interval				
		a. the product of the mass ofb. the product of the force a						
		c. the time interval divided						
		d. the net external force div	•					

Name:			ID: A
44.	A 0.2 baseball if pitched with a veloci What is the magnitude of change in th	-	and is then batted to the pitcher with a velocity of 60 m/s. entum?
	a. 4 kg•m/s	c.	
	b. 8 kg•m/s	d.	_
45.	· ·		the variables in the equation $\mathbf{F}\Delta t = \Delta \mathbf{p}$?
			mentum over a long time interval.
	b. A large constant force acting over		
	momentum.	i a rong time	interval eadses a large change in
	c. A large constant force changes an	object's mo	mentum at various time intervals.
		-	use a change in an object's momentum.
46.		•	c ,
	a. of the large ball decreases, and th		
	b. of the small ball decreases, and the		
	c. of the large ball increases, and the		<u> </u>
	d. does not change for either ball.		
47.	_	One skater's r	mass is 60 kg, and the other's mass is 72 kg. If the skaters
·/·	push away from each other without sp		nuss is oo kg, and the other s muss is 72 kg. If the skaters
	a. the 60 kg skater travels at a lower	•	
	b. their momenta are equal but oppo		
	c. their total momentum doubles.		
	d. their total momentum decreases.		
48.	The law of conservation of momentum	n states that	
			cting with one another usually equals the
	total final momentum.		· · · · · · · · · · · · · · · · · · ·
		objects intera	cting with one another does not equal the
	total final momentum.	3	
	c. the total momentum of all objects	s interacting v	with one another is zero.
	d. the total momentum of all objects	s interacting v	with one another remains constant
	regardless of the nature of the for	ces between t	the objects.
49.	Which of the following angles equals	2π rad?	
	a. 360°	c.	0°
	b. 180°	d.	3.14°
50.	Earth has an equatorial radius of appro	oximately 638	80 km, and it rotates 360° every 24 h. What is the angular
	displacement of a person standing at the	•	
	a. 0.26 rad	с.	
	b. 0.52 rad	d.	0.39 rad
51.	If the distance from the center of a me	erry-go-round	to the edge is 1.2 m, what centripetal acceleration does a
	passenger experience when the merry-		
	$\mathbf{a.} 1.7 \text{ m/s}^2$	c.	0.3 m/s^2
	b. 0.9 m/s^2	d.	
52.			V. What is the gravitational force if the distance between
	them is tripled? ($G = 6.673 \times 10^{-11} \text{ N} \cdot \text{s}$		
	a. 4.0 N	c.	18 N
	b. 9.0 N	d.	27 N

Fina exam revie sem 1 Answer Section

MULTIPLE CHOICE

1.	ANS:	A	DIF:	I	OBJ: 1-1.2
2.	ANS:	В	DIF:	Ī	OBJ: 1-2.1
3.	ANS:	D	DIF:	I	OBJ: 1-2.1
4.	ANS:	D	DIF:	I	OBJ: 1-2.3
5.	ANS:		DIF:	II	OBJ: 1-2.3
6.	ANS:	A	DIF:	IIIA	OBJ: 1-2.4
7.	ANS:	В	DIF:	I	OBJ: 1-3.2
8.	ANS:	A	DIF:	IIIA	OBJ: 2-1.2
9.	ANS:	В	DIF:	I	OBJ: 2-2.1
10.	ANS:	A	DIF:	II	OBJ: 2-2.2
11.	ANS:	C	DIF:	IIIA	OBJ: 2-2.3
12.	ANS:	C	DIF:	I	OBJ: 2-3.1
13.	ANS:	В	DIF:	IIIB	OBJ: 2-3.2
14.	ANS:	C	DIF:	I	OBJ: 2-3.3
15.	ANS:	В	DIF:	II	OBJ: 3-1.1
16.	ANS:	В	DIF:	II	OBJ: 3-1.2
17.	ANS:	A	DIF:	IIIA	OBJ: 3-1.3
18.	ANS:	D	DIF:	I	OBJ: 3-2.1
19.	ANS:	C	DIF:	IIIB	OBJ: 3-2.2
20.	ANS:	В	DIF:	I	OBJ: 3-3.1
21.	ANS:	A	DIF:	I	OBJ: 3-3.2
22.	ANS:	C	DIF:	IIIB	OBJ: 3-4.2
23.	ANS:	A	DIF:	I	OBJ: 4-1.1
24.	ANS:	D	DIF:	Ι	OBJ: 4-1.2
25.	ANS:	C	DIF:	I	OBJ: 4-1.3
26.		D	DIF:	I	OBJ: 4-2.3
27.	ANS:	D	DIF:	IIIB	OBJ: 4-2.3
28.	ANS:		DIF:	IIIB	OBJ: 4-3.2
29.	ANS:	C	DIF:	I	OBJ: 4-3.3
30.	ANS:	D	DIF:	I	OBJ: 4-4.1
31.	ANS:		DIF:	IIIC	OBJ: 4-4.4
32.	ANS:		DIF:	I	OBJ: 5-1.2
33.	ANS:	C	DIF:	IIIA	OBJ: 5-1.4
34.	ANS:	C	DIF:	I	OBJ: 5-2.1
35.	ANS:	C	DIF:	IIIA	OBJ: 5-2.2
36.	ANS:	C	DIF:	I	OBJ: 5-2.4
37.	ANS:	D C	DIF:	IIID	OBJ: 5-2.4
38.	ANS:	C	DIF:	IIIB	OBJ: 5-2.5
39.	ANS:	D	DIF:	IIIA	OBJ: 5-3.3
40.	ANS:	D	DIF:	IIIB	OBJ: 5-4.3

41.	ANS:	В	DIF:	IIIB	OBJ:	6-1.1
42.	ANS:	C	DIF:	II	OBJ:	6-1.1
43.	ANS:	В	DIF:	I	OBJ:	6-1.3
44.	ANS:	D	DIF:	IIIB	OBJ:	6-1.3
45.	ANS:	В	DIF:	I	OBJ:	6-1.4
46.	ANS:	A	DIF:	II	OBJ:	6-2.1
47.	ANS:	В	DIF:	II	OBJ:	6-2.2
48.	ANS:	D	DIF:	I	OBJ:	6-2.3
49.	ANS:	A	DIF:	I	OBJ:	7-1.1
50.	ANS:	C	DIF:	IIIA	OBJ:	7-1.2
51.	ANS:	C	DIF:	IIIB	OBJ:	7-2.3
52.	ANS:	A	DIF:	IIIA	OBJ:	7-3.3